VILLER FRY METRISERP ⊙ CSE: MILI ⊙ OTC: MILIF ⊙ FSE: QN90

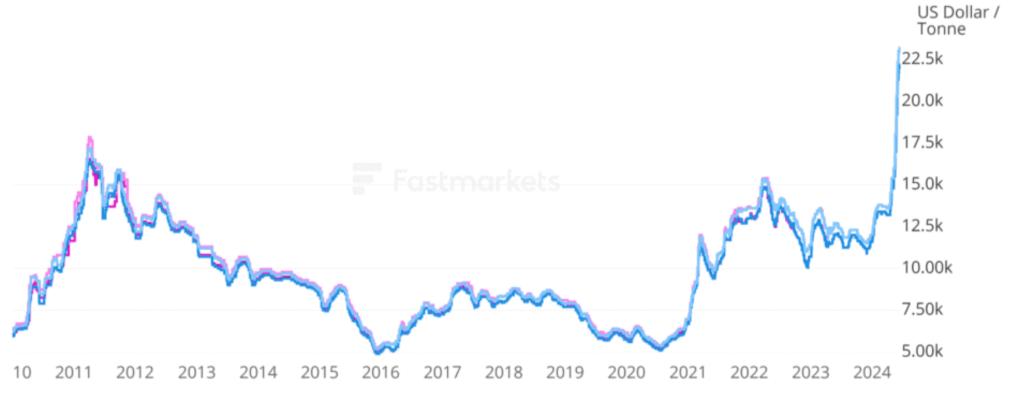
OCTOBER 2024

ANTIMONY A CRITICAL MINERAL WITH MILITARY SIGNIFICANCE

Antimony (Sb), a metalloid with the atomic number 51, has been known since ancient times for its various applications. While it has traditionally been used in cosmetics, medicine, and metallurgy, its role in modern industry and military applications has grown substantially. Antimony is now considered a critical mineral by several countries due to its strategic importance.

WHY IS ANTIMONY **IMPORTANT?**

The importance of antimony in the modern world cannot be overstated. It is classified as a critical mineral because it is essential for various industrial and defense applications, and there are concerns about supply chain security.


- Industrial Use: Antimony is crucial in the \bigcirc production of flame retardants, alloys, and semiconductors.
- **Defense Applications:** Its role in military (\bigcirc) technology, such as in ammunition and electronic devices, is vital.
- \bigcirc Supply Risk: The global supply of antimony is concentrated in a few countries, making it vulnerable to geopolitical and economic disruptions.

Licence user: xiaoying.du@fastmarkets.com Downloaded on 17 Jun 2024 @ 16:36

Fastmarkets

Fastmarkets' antimony prices

low	🛑 High	MB-SB-0001 - Antimony max 10
Low	High	MB-SB-0002 - Antimony MMTA

This material is provided by Fastmarkets Global Limited (a company registered in England and Wales under number 142215) doing business as Fastmarkets MB and Fastmarkets IM, and Metal Bulletin Holdings LLC doing business as Fastmarkets AMM, collectively referred to in the material as 'Fastmarkets'. It is provided to you subject to your compliance with the terms of your license agreement with Fastmarkets, in addition to the Fastmarkets Copyright Notice and Disclaimer.

If you need additional access please contact hello@fastmarkets.com

 \bigcirc

"US lawmakers have expressed concern that many of the critical minerals the DoD uses to build advanced weaponry come solely or mostly from China and Russia."

00 ppm Bi, in-whs Rotterdam, \$/tonne -SB-0002 - Antimony MMTA standard grade II, in-whs Rotterdam, \$/tonne

© Fastmarkets 2023

CSE: MILI 🔘 OTC: MILIF 🛛 🎯 FSE: QN90

WHY IS ANTIMONY CRITICAL?

TH. IF

AMMUNITION Production

Antimony is used to harden lead in bullets and other projectiles, enhancing their performance and durability.

ARMOR-PIERCING Rounds

Armor-Piercing Rounds The addition of antimony to alloys improves the penetration capabilities of armor-piercing rounds, making

of armor-piercing rounds, making them more effective against fortified targets.

BATTERY TECHNOLOGY

Lead-antimony alloys are used in batteries that power various military equipment and vehicles, ensuring reliable performance under extreme conditions.

• • • • •

Antimony's role in military applications is multifaceted and significant. Here are some of the key areas where antimony is indispensable:

MILITARY METALS CORP

CSE: MILI 🔘 OTC: MILIF

 \bigcirc

MILITARY Electronics

Antimony-based semiconductors are critical in the production of infrared detectors, diodes, and other electronic components used in military hardware.

FLAME RETARDANTS

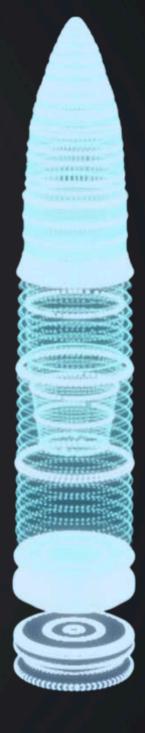
Armor-Piercing Rounds Antimony trioxide is a key component in flame retardants used in military uniforms, equipment, and vehicles, providing essential protection in combat situations.

SOLAR PANELS

Antimony is emerging as a key material in solar technology, boosting efficiency, enhancing thermal stability, and advancing energy storage solutions.

4

HISTORICAL CONTEXT OF ANTIMONY IN WARFARE


Antimony has a long history of use in military applications, dating back to ancient times:

- Ancient Weapons: Historical records suggest that antimony was used in alloys for weapons and tools as early as the Bronze Age.
- Medieval Warfare: During the Middle Ages, antimony was used in the production of type metal for printing press and in some medicinal preparations for soldiers.
- World War I: Antimony's vital role in strengthening ammunition, enhancing military equipment, and supporting communications technology underscored its importance as a key material in the global conflict.

 \bigcirc

World War II: Antimony's role expanded significantly during World War II, particularly in the production of lead-based alloys for bullets and other ammunition.

CSE: MILI 🔘 OTC: MILIF 🔘 FSE: QN90

STRATEGIC IMPORTANCE IN MODERN DEFENSE

In contemporary military strategy, the availability of antimony is crucial for maintaining defense readiness and technological superiority:

- Supply Chain Security: Ensuring a steady supply of antimony is vital for defense contractors and military manufacturers to avoid disruptions in production.
- Technological Edge: Advanced military technologies, including radar systems, \bigcirc night vision devices, and precision-guided munitions, rely on antimonycontaining components.
- Geopolitical Considerations: Countries like China, Russia and Tajikistan \bigcirc dominate the production and export of antimony, raising concerns about potential supply restrictions or economic leverage in times of conflict.

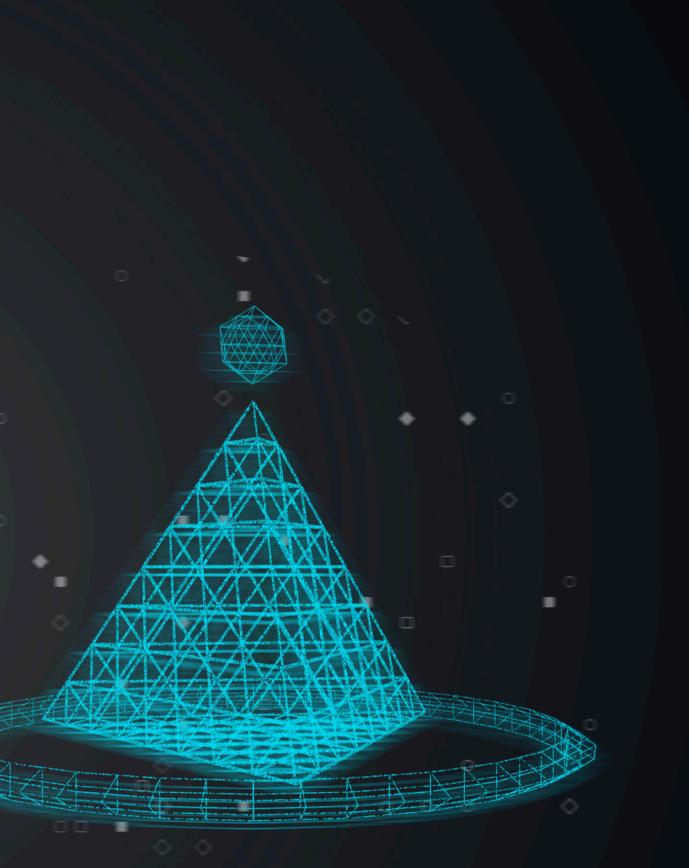
THE SILENT GUARDIAN OF NUCLEAR SAFETY

In nuclear energy, antimony is an unsung hero. Its properties enhance reactor safety, improve radiation shielding, and ensure reliable power storage, making it indispensable in the industry.

- Neutron Absorption Mastery: Antimony's excellent neutron absorption properties are essential for controlling nuclear reactions and maintaining reactor stability.
- Enhancing Radiation Shielding: Used in lead-based shielding materials, antimony improves the effectiveness of radiation protection, safeguarding both workers and the environment.
- Reliable Energy Storage: As an alloying agent in lead-acid batteries, antimony ensures a dependable backup power supply, crucial for the uninterrupted operation of nuclear facilities.

 \bigcirc

CSE: MILI © OTC: MILIF © FSE: QN90


THE UNSUNG HERO POWERING Solar Energy innovation

Antimony is emerging as a key material in solar technology, boosting efficiency, enhancing thermal stability, and advancing energy storage solutions. Its unique properties are helping to shape the future of clean energy.

- Boosting Solar Cell Efficiency: Antimony enhances perovskite solar cells by improving light absorption and charge transport, resulting in higher energy conversion rates. This makes solar panels more efficient at capturing sunlight and converting it into usable energy.
- Improving Thermal Stability: Antimony compounds strengthen the thermal stability of solar cells, allowing them to withstand high temperatures. This ensures solar panels can operate effectively in harsh environments and reduces the need for frequent replacements.
- Advancing Energy Storage: Antimony plays a key role in developing liquid-metal batteries, which are essential for storing solar energy. These batteries provide a more efficient and durable solution for capturing excess solar power, making renewable energy storage more reliable.

 \bigcirc

MILITARY METALS CORP

CSE: MILI 🔘 OTC: MILIF 🔘 FSE: QN90

COUNTRIES LISTING ANTIMONY AS A CRITICAL MINERAL

Several countries have recognized antimony as a critical mineral, reflecting its strategic importance:

- United States: The U.S. Geological Survey (USGS) includes antimony on its list of critical minerals due to its essential role in defense and industrial applications.

European Union: The EU has listed antimony as a critical raw material, acknowledging its importance for economic security and technological advancement.

Japan: Japan considers antimony a critical mineral, particularly for its role in the electronics industry.

Australia: Recognizing the need for secure supply chains, Australia has also listed antimony as a critical mineral.

China: producing 48% of the world's antimony, is seeing its reserves dwindle and output decline. Recent export restrictions, aimed at national security, have tightened global supply, worsening the longterm shortage of this essential resource.

Canada: Antimony is listed as a critical mineral due to its essential uses in defense, electronics, and flame retardants.

United Kingdom: The UK considers antimony critical for its role in defense and energy applications.

South Korea: Antimony is important for South Korea's electronics and defense industries, leading to its inclusion as a critical mineral.

CSE: MILI 🔘 OTC: MILIF 🔘 FSE: QN90

PROJECT **OVERVIEW**

TROJAROVA PROPERTY Trojarova, Slovakia

TIENESGRUND PROPERTY Tienesgrund, Slovakia

WEST GORE PROPERTY Nova Scotia, Canada

Strategic Antimony Assets in Slovakia

Unlocking Value from Three Historical Sites

BEAR CREEK PROPERTY Medvedi Potok, Slovakia

O CSE: MILI O OTC: MILIF OFSE: QN90

TROJAROVA PROPERTY

TROJAROVA, SLOVAKIA

KEY POINTS

- Location: Western Slovakia, near its capital city, Bratislava \bigcirc and along strike of Pezinok, one of Europe's most significant historical antimony mines.
- Ownership: In 2024, Military Metals Corp secured the \bigcirc exploration license.
- Historical Significance: The area has a rich mining history \bigcirc going back to the 14th century, including antimony, gold, iron and more

STATUS: EXPLORATION ADIT WITH RESOURCE

INITIAL DISCOVERY:

Discovered in the late 1950 \bigcirc prospecting for iron the ex developed in the 1980-earl

ADIT EXCAVATION:

- Funded initially by the Slow \bigcirc
- Currently, no economically \bigcirc recoverable ore is accessi extending the adit further.

HISTORICAL RESOURCE ES

- 1989 Estimate: 1.665 milli \bigcirc at 2.77% antimony (Sb) an gold (Au).
- \bigcirc

CSE: MILI 🔘 OTC: MILIF 🛛 🛇 FSE: QN90 \bigcirc

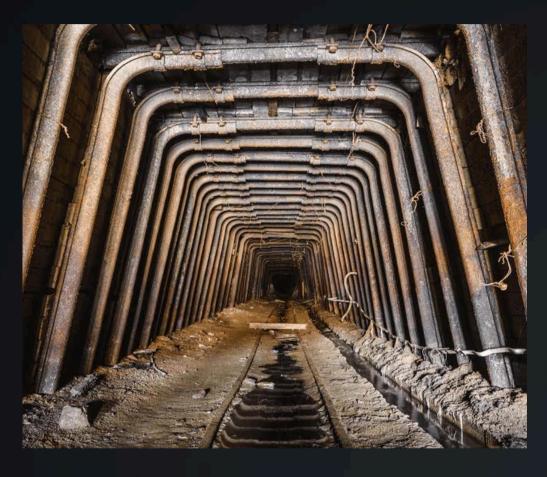
0s while cplored and ly 90s		Two phases of exploration: drilling and excavation of an adit.
vak state. / ble without		Underground development was terminated prior to reaching the richest part of the deposit
TIMATES:		
on tonnes d 0.81 g/t	\bigcirc	1992 Estimate: 0.831 million tonnes at 5.645% Sb and 0.676 g/t Au.

Whereas the 1989 historical estimate focused on tonnage the 1992 estimate focused on antimony grade and was more selective; both include down only to 150 meters even though mineralization is known to continue down-dip.

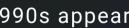
TROJAROVA PROPERTY

TROJAROVA, SLOVAKIA

KEY POINTS


- Location: Western Slovakia, near its capital city, Bratislava \bigcirc and along strike of Pezinok, one of Europe's most significant historical antimony mines.
- Ownership: In 2024, Military Metals Corp secured the \bigcirc exploration license.
- Historical Significance: The area has a rich mining history \bigcirc going back to the 14th century, including antimony, gold, iron and more

 \bigcirc


FUTURE OPPORTUNITY:

 $\bullet \bullet \bullet \bullet \bullet$

Rehabilitating and extending the adit will provide access to the richest \bigcirc portion of drill-defined antimony-gold mineralization and enable drilling the down-dip extension of the deposit

The main portal dating from the 1990s appear to be in fairly good condition.

Adit Entrance

CSE: MILI 🔘 OTC: MILIF 🔘 FSE: QN90

TIENESGRUND PROPERTY

TIENESGRUND, SLOVAKIA

KEY POINTS

- Location: Near Roznava, a historic mining town in eastern \bigcirc Slovakia.
- Historical Mining: The site features two primary antimony- (\bigcirc) gold (Sb-Au) veins, sporadic limited antimony-gold production between 1840-1932.

 \bigcirc

Recent History: None beyond limited underground (\bigcirc) development.

STATUS: HISTORICAL

 $\bullet \bullet \bullet \bullet \bullet$

HISTORICAL EXPLORATION & PRODUCTION:

1840: First recorded commercial exploitation of antimony veinS. 1930s: Mines reopened, producing 1,000 tonnes of concentrate by 1932. 1950s: Underground development work including assessing the property'd tungsten potential (found in association with antimony-gold) **Recent**: Recent work includes sampling of veins on surface (grabs up to 38% antimony and 9.7 gpt gold) and a LIDAR survey.

GEOLOGY AND LICENSE DETAILS:

License: Covers 13.38 km², \bigcirc 2026.

HISTORICAL RESOURCE EST

1959: Historical Soviet-era \bigcirc estimated a resource of 16 an average grade of 7.7% Sb.

TIMELINE CHART:

- 1840: Initial mining activity begins.
- 1932: Reopened mines produce 1,000 tonnes of concentrate.
- 1954: Vysna adit established.
- 1959: Rozabella adit historical resource estimate (162 tons, 7.67% Sb).
- 2022: License granted for the Split Nose Project, valid until 2026.

hundred meters

, valid until	Ô	Geology: Vein-type shear zone-hosted lenses hosting antimony-gold mineralization over a distance of 700 meters documented to date.
IMATE:		
work 2t with	Ô	Soviet era resource based on limited work with a larger mineralized area.

2024: Recent sampling confirms high tenor of antimony-gold mineralization in veins at surface over a several

CSE: MILI 🔘 OTC: MILIF 🔘 FSE: QN90

TIENESGRUND PROPERTY

TIENESGRUND, SLOVAKIA

KEY POINTS

- Location: Near Roznava, a historic mining town in eastern \bigcirc Slovakia.
- Historical Mining: The site features two primary antimony- \bigcirc gold (Sb-Au) veins, sporadic limited antimony-gold production between 1840-1932.

 \bigcirc

Recent History: None beyond limited underground \bigcirc development.

FUTURE OPPORTUNITY:

 \bigcirc potential of the Split Nose Project.

 $\bullet \bullet \bullet \bullet \bullet$

 \bigcirc mineralization that was previously ignored

Adits and portal dating from the 1840.

Significant Antimony Potential: Recent sampling highlights the geological

Tungsten Discovery: Additional potential due to associated tungsten

WEST GORE PROPERTY

HANTS COUNTY NOVA SCOTIA, CANADA

KEY POINTS

- Location: The West Gore Property spans four (4) \bigcirc exploration licenses covering 585 hectares in Hants County, Nova Scotia, Canada
- **Ownership:** These licenses encompass the southern \bigcirc portion of the former West Gore Sb-Au mine, a site active in the late 1920s primarily for antimony extraction.
- Historical Significance: The last comprehensive geological (\bigcirc) survey was conducted in 1939.

 \bigcirc

STATUS: PAST PRODUCER OF ANTIMONY

KEY HISTORICAL MILESTONES:

1883: Antimony discovered on John MacDougall's farm, leading to extensive trenching and the first mining operations.

1889: New shafts sunk on parallel leads; discovery of auriferous ore increased its value. 1900-1908: High-production era under the Dominion Antimony Company, including shaft deepening and a brief operation of a concentrating mill. 1917: Production halted due to the sinking of a concentrate-carrying ship, a significant economic blow.

Late 19th Century: Unverified reports of 19,200 oz of gold from 18,000 tons of ore. 1940s-1960s: Reports indicated significant material on waste/tailings dumps, including 1.2M pounds of antimony and 2,528 oz of gold.

house and the brand new mill building.

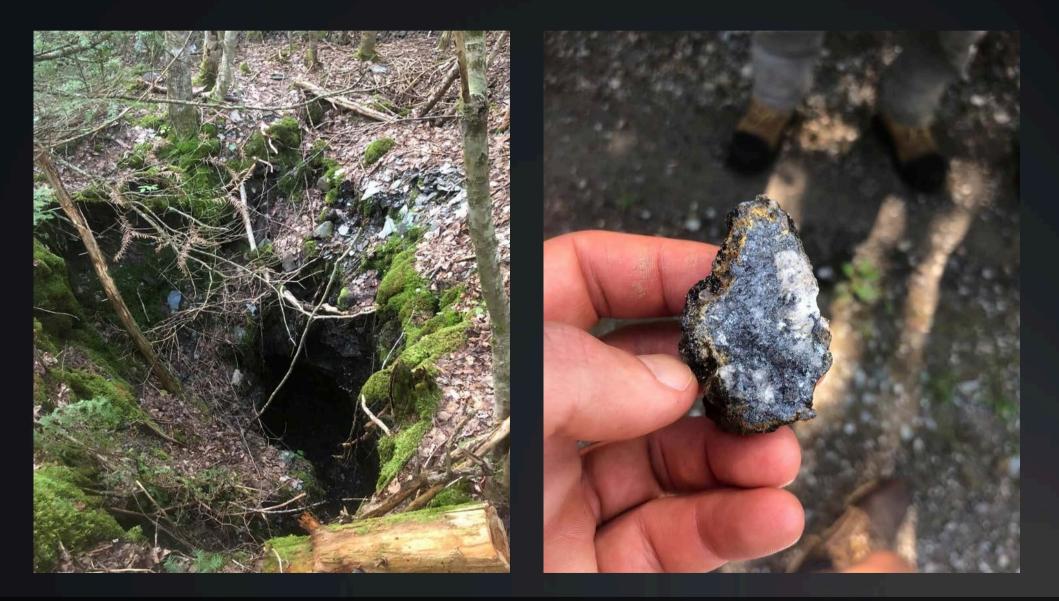
Figure 1: Surface workings at West Gore circa 1907 showing the shaft

CSE: MILI OOTC: MILIF OFSE: QN90

WEST GORE PROPERTY

HANTS COUNTY NOVA SCOTIA, CANADA

KEY POINTS


- Between the mid-1880s and World War I, West Gore in Hants \bigcirc County was home to an antimony and gold mine. During the war, it became Canada's largest antimony producer.
- In 1910-1911, the West Gore Antimony Company processed \bigcirc over 7,500 tons of ore from the dumps, shipping nearly 400 tons of concentrate overseas for smelting.
- Operations resumed from 1915-1917, with underground \bigcirc expansions. Over 35,000 tons of ore were milled, yielding 7,761 tons of concentrate with 46% antimony content.

 \bigcirc

GEOLOGY OF WEST GORE

- \bigcirc
- \bigcirc Cobequid-Chedabucto fault system.
- \bigcirc

This combination of geology and historical mining data positions West Gore as a unique and promising target for modern exploration.

The mineralization is largely composed of stibnite, native antimony, Sb-Au alloys, and phases in vein quartz with Fe, As, Pb, Zn, Cu sulfides.

Veins were localized in brittle-ductile environments, related to the regional

The mineralizing fluids likely originated during the Acadian orogeny, contemporaneous with felsic and mafic magmatic activity.

BEAR CREEK PROPERTY

MEDVEDI POTOK, SLOVAKIA

KEY POINTS

- Location: Just outside the town of Hnilec in eastern \bigcirc Slovakia
- Historical Exploration: Conducted from 1971 to 1981 by \bigcirc state-owned enterprise Geologický Prieskum.
- Focus: Tin mineralization. $(\bigcirc$

STATUS: HISTORICAL EXPLORATION

.

 \bigcirc

HISTORICAL EXPLORATION: 1971-1981

36 trenches excavated.

47 surface drill holes and 82 \bigcirc underground drill holes completed.

HISTORICAL RESOURCE ESTIMATE:

863,000 tonnes averaging 0.19% tin \bigcirc (Sn)

TIMELINE CHART:

1971-1981: Exploration conducted by Geologický Prieskum, including drilling and adit excavation.

1981: Resource estimates calculate 863,000 tonnes of ore with 0.19% tin (Sn) and 71,000 tonnes of high-grade tin (8% of total). Present: The Full Metal Project, building on historical data, focuses on unlocking tin potential, ready to capitalize on the critical minerals market.

 \bigcirc

FUTURE OPPORTUNITY:

- \bigcirc tin resources.
- \bigcirc

CSE: MILI O OTC: MILIF OFSE: QN90 \bigcirc

Two adits totaling 5,301 meters and a 10-meter deep shaft were excavated.

Classic greisened granite-hosted system featuring several high-grade veins

Strategic Asset: Leveraging historical data, the project is poised for development of the

 \bigcirc

Critical Mineral Focus: With growing global demand for critical minerals like antimony, the Full Metal Project holds substantial value in this market.

SHARE STRUCTURE

Shares Issued & Outstanding	30,244,014	
Fully-Diluted Common Shares	67,343,033	
Convertible Debenture	9,090,000	
Warrants	27,648,110	
Options	360,000	
Cash	\$3,300,000	

Average Trading Volume (30 Day)	193,538

™ MILITARY METALS CORP. · 1D · CSE 00.71 H0.72 L0.69 C0.69 -0.02 (-2.82%) Vol 144.53 K

Vol 144.53 K		
Is.M. III		A

*AS PER CEO.CA

◎ CSE: MILI ◎ OTC: MILIF ◎ F

◎FSE: QN90

MANAGEMENT & DIRECTORS

Transcends Every Challenge!

SCOTT ELDRIDGE CEO

BOBBY DHALIWAL CFO

LATIKA PRASAD Director

CSE: MILI OOTC: MILIF OFSE: QN90 \bigcirc

Forged in Unity, Mining Success

MICK CAREW

Director

ZORAN PUDAR

Director

IN THE MEDIA

JUNIOR STOCKS

China Tightens Grip on Critical Minerals with Antimony Export Restrictions

 \bigcirc

Antimony: Fireproof and Supply-Critical

Forbes

Antimony: The Most Important Mineral You Never Heard Of

Follow Antimony's story below;

RESEARCH AND MARKETS

THE WORLD'S LARGEST MARKET RESEARCH STORE

Global Antimony Market Set to Reach \$3.0 Billion by 2028, Driven by Growing Demand for Flame **Retardants and Electronics**

VIL FRY METRISCRP ⊙ CSE: MILI ⊙ OTC: MILIF ⊙ FSE: QN90

INFO@MILITARYMETALSCORP.COM WWW.MILITARYMETALSCORP.COM

